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Application of a Simple and Efficient Source
Excitation Technique to the FDTD Analysis
of Waveguide and Microstrip Circuits

An Ping Zhao and Antti V. Réisdnen, Fellow, IEEE

Abstract— A simple, efficient, and unified source excitation
scheme for the finite-difference time-domain (FDTD) analysis
of both waveguides and microstrip circuits is developed and
validated. In this scheme, by moving the source plane several
cells inside the terminal plane and adding the excitation wave
as an extra term in the FDTD equation, the interaction between
the excitation and reflected waves are totally separated in time
domain. Hence, for both waveguide and microstrip disconti-
nuities, absorbing boundary conditions can be applied on the
terminal plane directly. In particular, for microstrip circuits, our
scheme does not induce any source distortions when a simplified
field distribution is used as the excitation. Consequently, the
terminal plane can be moved very close to the discontinuity and
thus significant computational savings are achieved. In addition,
for microstrip systems, the validity and efficiency of the Mei’s
simplified field distribution are evaluated and confirmed for the
first time.

1. INTRODUCTION

INCE THE finite-difference time-domain (FDTD) method
Swas introduced by Yee [1], it has been widely used in
the analysis of waveguides [2]-[8] and microstrip circuits
[9]-[14]. In the application of the FDTD method to waveguide
and microstrip discontinuities, one of the most difficult prob-
lems is how to separate the interaction between the source
excitation and the reflection in time domain. Without an
ideal source excitation scheme, absorbing boundary conditions
(ABC’s) cannot be directly applied on the near-end terminal
(or source) plane because strong reflections caused by the
discontinuity normally reach this terminal plane before the
source excitation is totally launched. In particular, the above
separation requirement is always needed if the monochromatic
FDTD methods are used since in this case the time stepping
must be continued until a steady-state is reached. On the other
hand, although the separation requirement is not strict when the
discontinuous waveguide or microstrip structure is excited by
a type of Gaussian pulses, a sufficiently long uniform feeding
port section (which requires significant computation) has to be
left between the source plane and the discontinuity.

In the past, to overcome the above difficulty, most efforts for
separating the excitation and reflected waves in time domain
were paid to waveguides, and several approaches have been
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developed [2]-[8]. The implementation of the approaches in
[2]-[5] is easier than of those in [6]-[8], because in [6]-[8]
a long uniform waveguide must be presimulated before the
ABC’s can be applied. However, there is still one drawback
in [2]-[5]: two field components (e.g., E, and H,) on the
source plane have to be pregiven, and they must be corrected
interactively. Certainly, the requirement of the two pregiven
field components limits the application of these approaches
to arbitrarily-shaped structures (e.g., microstrip), even though
it can be satisfied for rectangular waveguides. Therefore, a
modification for making the approaches [2]-[5] applicable to
general discontinuous structures is needed.

Although attentions for separating the interaction were paid
to discontinuous waveguides, no much intentions have been
made to microstrip discontinuities. For microstrip discontinu-
ities [9]-[13], the commonly used source excitation scheme
is based on the idea presented in [9] and [10]. In [9] and
[10], the source plane and the near-end terminal plane were
located at the same position, the simplified field distribution
on the source plane was used and the ABC was applied on the
source plane after the excitation pulse had been fully launched.
Furthermore, before the ABC is allowed to ‘switch on’ on the
source plane, dc source distortions on this plane and nearby are
induced by either the electric [9], [10] or magnetic [11] wall
boundary treatment. It is obvious that this dc source distortion
not only causes troubles in the boundary treatment, but also
influences the traveling wave. This is why with these source
excitation schemes the terminal/source plane cannot be moved
very close to the discontinuity. Alternatively, a lumped device
model [14], which is able for separating the interaction in
time domain, was developed. In this approach [14], however,
unrealistic media with a constant conductivity (o) have to be
introduced in the excitation region, and hence it cannot be
applied to structures containing lossy materials. To overcome
the above difficulties, therefore, it is necessary to develop a
better source excitation scheme, for general microstrop and
waveguide discontinuities.

In this paper, based on the idea presented in [2], we develop
a simple, efficient and unified source excitation scheme for
both general waveguide and microstrip discontinuities. Unlike
the source excitation schemes used in [2]-[5], however, in our
scheme only one field component is needed to be pregiven
and this field component is modified by itself. Due to the
above specific nature of our scheme, it can be more easily
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Fig.'1. ‘Division of discontinuous systems. (a) Waveguide. (b) Microstrip.

implemented than its original form, and in particular, it is
suitable for both general waveguide and microstrip structures
excited with any type of excitation waves. Most importantly,
with the help of our source excitation scheme, the accuracy
and efficiency of the Mei’s simplified field distribution for
microstrip structures -are investigated and confirmed.

II. NUMERICAL TECHNIQUE

Discontinuous waveguide and microstrip systems consid-
ered in this paper are shown in Fig. 1(a) and (b), respectively.
The source plane is located several cells inside the near-end
terminal plane. For either the waveguide or the microstrip
system, the whole computational region is divided into two
subregion by this source plane. The discontinuity and the far-
end terminal plane are suited in region 1, whereas the near-end
terminal plane is in region 2. For a given excitation wave,

T~ inc> the Yee’s FDTD equation on the source plane at jing

z,inc?

is simply corrected as [15]
E:+1(i>jinp7 k)

= E:(i’jinp7 k)
At

+ EA.’B (H;+1/2 (Z + 17jinp7 k) - H;H_l/z (iyjin}h k))
= 2ag U2 ian + 1K) = H 2, i, )
+ Eg,inc(i?jinca k) (1)

The Yee’s FDTD equations for the other EM-field com-
ponents remain unchanged on the source plane. With the
above arrangements, within the first part (i.e., between the
incident plane and the discontinuity) of region 1 the EM
fields contain the incident wave (propagates in +y direction)
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Fig. 2. S-parameter of the discontinuous WR-3 waveguide, where
d = 0.504 mm and &, = 3.7, obtained with the following parameters:
Az = Az = of24, Ay = df14; jixp = 11Ay, total mesh size
24 x 38 x 12, N; = 3000; PML theoretical reflection coefficient R = 105,

and the reflected wave; whereas the EM fields in region 2
contain the incident wave (propagates in —y direction) and the
reflected wave. In region 2 the incident wave propagating in
~—y direction and the reflected wave are immediately absorbed
on the near-end terminal plane, while the incident wave (within
the first part of region 1) propagating in +y direction is used
to examine the discontinuous system itself. Moreover, for
microstrip systems, when the Mei’s simplified field distribution
is used as the initial source excitation, during the excitation
no special boundary treatment is applied to the remaining EM
fields on the source plane, and they are calculated from the
normal Yee’s FDTD formulation. Hence, unlike the source
excitations employed in [9]-[13], the dc source distortions
caused by the electric (or magnetic) wall boundary treatment,
are not apparent in our excitation scheme.

III. NUMERICAL RESULTS

To validate and confirm the proposed excitation technique,
in this section we apply it to waveguide and microstrip
discontinuities excited with different type of excitation waves.

A. Waveguide Discontinuities

A short-circuited waveguide excited with a single frequency
sinusoidal wave was analyzed with the proposed excitation
scheme [16]. We here calculate the scattering parameters for
a step discontinuity in a WR-3 waveguide due to waveguide
section of finite length homogeneously filled with dielectric
material [17]. In the study of this waveguide, an Gaussian
pulse imposed on a sinusoidally varying carrier in a specific
frequency range (fiin = 210 GHz, and f.x = 333 GHz)

‘is used as the source wave [4], [5], and a 10-cell perfectly

matched layer (PML) ABC [18], [19] is used in the front and
back regions of the waveguide. Numerical results are given in
Fig. 2. As can be seen from Fig. 2, our results agree very well
with Arndt’s results [17] obtained with 2-D FDTD method.
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Fig. 4. S-parameter of the rectangular microstrip antenna for case 1
(L = 50Ay, jinp = BAY), case 2 (L = B0Ay, jinp = 25Ay), and
case 3 (L = 50Ay, jinp = 45Ay).

B. Microstrip Discontinuities

For microstrip systems, the line-fed rectangular microstrip
antenna [11], as shown in Fig. 3, is analyzed. In this study, the
simplified field distribution (i.e., uniform between the strip and
the ground plane) [9], [10] is used as the excitation. Except that
the source plane is separated from the near-end terminal plane,
all parameters are chosen to be the same as those used in [11].
The numerical results for cases 1-3 obtained with our FDTD
algorithm are shown in Fig. 4. It can be seen from Fig. 4
that our results are in good agreement with those obtained
in [11], even for case 3 where the source plane is located
only 5 cells away (i.e., jinp = 45) from the discontinuity. It
should be noted that in case 3 the source plane is actually
located behind the reference plane, P. Particularly, in case 3
the incident wave propagating in —y direction (i.e., the wave in
region 2) is used in the S-parameter calculation. In addition, as
shown in Fig. 4 our results are more accurate than those given
in [11] when the frequency is below 2.5 GHz. The appearance
of the ripples in this lower frequency range might be caused
by the dc distortion. Numerical results presented in Fig. 4 (and
others presented in [15]) prove the validity of our excitation
scheme. To examine the efficiency of our source excitation
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Fig. 5. S-parameter of the rectangular microstrip antenna for case 1, case 4
(L = 25Ay, jinp = 5Ay), and case 5 (L = 11Ay, jinp = 5Ay).

‘scheme, we next carry out our calculations by reducing the

length of the feeding port (i.e., moving the near-end terminal
plane toward the discontinuity). Numerical results for cases 4
and 5 are given in Fig. 5, and for comparison the results of
case 1 are shown again in this figure. As shown in Fig. 5 quite
accurate results can still be obtained even when the terminal
plane is 11 cells away (i.e., case 5) from the discontinuity. It
should be noted that in case 5 the computational volume for
the microstrip structure has been reduced from 60 x 100 x 16 to
its minimum 60 x 61 x 16. It is also worth mentioning that with
our scheme the GRT requirement is automatically satisfied for
calculating Sy1 parameter, even though it was claimed that the
GRT can only be used to calculate So1 parameter [13]. Hence,
making the GRT applicable to 51; could be seen as one of the
advantages (or byproducts) of our excitation scheme.

Both the validity and efficiency of our source excitation
scheme are confirmed by the numerical results presented in
Figs. 4 and 5. However, it is still necessary to make a complete
examination on the efficiency (and accuracy) of the simplified
field distribution adopted in the computations. Even though an
exploration of the simplified field distribution was made in [9],
[10] by applying it to many different microstrip structures and
its accuracy had been confirmed by many other investigators
[11]-[13], the efficiency of this simplified field distribution
was still obscure. For instance, can the source plane with
such a simplified field distribution be moved very close to the
discontinuity? To answer this question, the cases (i.e., cases
6 and 7) where the source plane located very close to the
discontinuity are investigated and the numerical results for
these cases are presented in Fig. 6. To give a comparison,
also the result of case 5 is shown in Fig. 6. From Fig. 6, one
can see that the simplified field distribution is still valid even
when the source plane is located only one cell in front of
the discontinuity (i.e., case 7). It must be emphasized that
the validity and efficiency of the simplified field distribution
cannot be examined in full without using our source excitation
scheme.

Finally, it should be mentioned that the very detailed
scattering parameters presented in Figs. 4—6 are obtained with
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Fig. 6. S-parameter of the rectangular microstrip antenna for case 5, case 6
(L = 11Ay, jinp = 8Ay), and case 7 (L = 11Ay, jinp, = 10Ay).

the spéctral estimation technique [20] based on the frequency
shifting.

IV. CONCLUSIONS

A simple, efficient and unified source excitation scheme for
the FDTD analysis of waveguide and microstrip discontinuities
is demonstrated. In this scheme, the source plane is located
several cells inside the near-end terminal plane and the exci-
tation wave is added as an extra term in the FDTD equation.
Such a treatment totally separates the source excitation and
the reflected wave in time domain. Hence, for both waveguide
and microstrip discontinuities, ABC’s can be applied at the
near-end terminal plane directly, without any special treatment.
Most importantly, for microstrip circuits, our source excitation
scheme does not produce any dc source distortion on the
source plane and nearby. Therefore, with our source excitation
technique, the computational volume for both waveguide and
microstrip discontinuities can be reduced very significantly by
moving the terminal plane close to the discontinuity. This in
turn saves computer memory and CPU time. Numerical results
obtained from our algorithm confirm the validity and efficiency
of this new excitation scheme and the approach proposed in
this paper should be very useful in computer-aided-design
(CAD) of a variety of microwave and microstrip integrated
circuits.
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